Engineering Science and Engineering Technology (ENR)

Courses

Course usage information

ENR-103. Basic Engineering Graphics I. 1 Credit.

LAB 3 hrs
Students learn fundamentals of engineering drawing through freehand sketching. Course includes developing orthographic views including auxiliary views, dimensioning, sectioning, tolerancing, threads, fasteners, springs and assembly drawings. Course includes creation of pictorial drawings.

Course usage information

ENR-117. Computer-Aided Drafting I. 2 Credits.

LECT 1 hr, LAB 4 hrs
This course is an introduction to the concepts and operation of engineering drawing preparation using CAD (computer-aided drafting). The emphasis is on how CAD can reduce drawing time and improve accuracy. Students learn to use the AutoCAD software program to prepare drawings.
Additional Fees: Course fee applies.

Course usage information

ENR-118. Computer-Aided Drafting II. 2 Credits.

LECT 1 hr, LAB 4 hrs
This course is a continuation and enhancement of Computer-Aided Drafting I. Topics include prototype drawings, blocks, attributes, x-reference, grips, paper space and development of 3-dimensional solid modeling.
Prerequisites: ENR-117
Additional Fees: Course fee applies.

Course usage information

ENR-119. Technical Computer Applications. 1 Credit.

LAB 3 hrs
This course provides an introduction to the various technical tools available to help solve problems in the field of engineering technology. This is a hands-on laboratory course designed to provide students with experience in using scientific calculators, Windows Operating System, Microsoft Office and Internet search tools. Special emphasis is placed on the development of technical reports using Microsoft Office's EXCEL and Word programs.
Prerequisites: MAT-007 or equivalent
Additional Fees: Course fee applies.

Course usage information

ENR-120. Technical Computer Programming. 2 Credits.

LECT 2 hrs, LAB 2 hrs
This course is an introduction to computer programming with application to engineering technology. Microcomputers are used to develop application programs in a programming language.
Prerequisites: MAT-007 or equivalent
Additional Fees: Course fee applies.

Course usage information

ENR-121. Engineering Graphics. 2 Credits.

LECT 1 hr, LAB 3 hrs
This course is an introduction to computer aided design software and hardware. Covered are geometric constructions, multiview orthographic projection, dimensioning, sectioning, auxiliary view and axonometric projection and principles of descriptive geometry. A brief introduction to solid modeling is also included. This course is intended for Engineering Science students; Engineering Technology students take ENR-117.
Prerequisites: MAT-123
Additional Fees: Course fee applies.

Course usage information

ENR-123. Introduction to Engineering. 0 Credits.

LECT 1 hr
This course provides the entering engineering student with an overview of the engineering profession and the design process. Topics discussed include the engineering course of study, academic advisement and transfer processes, types of engineering disciplines, problem-solving techniques, typical software tools, reporting techniques, and study skills.

Course usage information

ENR-124. Instrumentation and Measurements. 2 Credits.

LECT 1 hr, LAB 3 hrs
This course is an introductory study in the concepts involving physical measurements utilizing hands-on electrical and mechanical measurement applications. Use of basic instruments and transducers, accuracy and precision, units and standards of measurements, accounting and presentation of errors in measurements.
Prerequisites: MAT-007 or equivalent
Corequisites: ENR-119
Additional Fees: Course fee applies.

Course usage information

ENR-125. Computer Programming for Engineers. 3 Credits.

LECT 2 hrs, LAB 2 hrs
A course in structured and object-oriented programming, emphasizing engineering applications and numerical methods in assignments. Program assignments are coded and are implemented on personal computers.
Prerequisites: MAT-123
Additional Fees: Course fee applies.

Course usage information

ENR-126. Computer Aided Design and Applications. 2 Credits.

LECT 1 hr, LAB 4 hrs
An introductory course in computer aided design using parametric solid modeling software. Creation of solid models of parts, generation of orthographic views, sectional views and auxiliary views are covered. Dimensioning and tolerancing of parts is emphasized along with development of appropriate files to make the parts for product development using rapid prototyping (3-D printing) and to manufacture parts using computerized numerical control machines.
Prerequisites: ENR-117
Additional Fees: Course fee applies.

Course usage information

ENR-220. Hydraulics and Fluid Power. 3 Credits.

LECT 2 hrs, LAB 2 hrs
This course is an exploration into the relationship between pressure, density and temperature as they relate to hydraulic and pneumatic systems. Topics include hydraulic pumps, motors and air compressors. The course emphasizes use of engineering standards and specifications for circuit design and component selection. Electrical controls and application to systems are covered. Lab sessions further expand upon lectures by providing students with physical evidence to support theories and ideas acquired in class.
Prerequisites: MAT-110
Additional Fees: Course fee applies.

Course usage information

ENR-222. Mechanics of Solids. 3 Credits.

LECT 3 hrs
Principles of strength of materials are derived for uniaxial stresses and strains, direct shear, torsion bending and combined stresses and column buckling. Also covered are axial force, shear moment and torque in structural members and in statically indeterminate systems. Elementary failure theory of structures and mechanical components is discussed.
Prerequisites: ENR-223.

Course usage information

ENR-223. Engineering Mechanics I (Statics). 3 Credits.

LECT 3 hrs
This course is a vector approach to statics in a plane and in three dimensions, equilibrium of particles and rigid bodies. Equivalent force systems, structural analysis, centroids and moments of inertia. Virtual work and applied engineering problems are incorporated.
Prerequisites: MAT-131 and PHY-130.

Course usage information

ENR-224. Engineering Mechanics II (Dynamics). 3 Credits.

LECT 3 hrs
This course is a calculus-based course in dynamics. Kinematics and kinetics of particles and rigid bodies, Newton's laws, work, energy, impulse and momentum are covered. Practical engineering problems are incorporated.
Prerequisites: ENR-223.

Course usage information

ENR-230. Engineering Strength of Materials. 4 Credits.

LECT 3 hrs, LAB 3 hrs
Principles of strength of materials are derived for uniaxial stresses and strains, direct shear, torsion bending, and combined stresses and column buckling. Elementary failure theory of structures and mechanical components is discussed. Laboratory covers a variety of tensile stress-strain, impact and hardness tests, as well as shear stress-strain and the techniques of report writing.
Prerequisites: ENR-223
Additional Fees: Course fee applies.

Course usage information

ENR-232. Materials Science. 3 Credits.

LECT 3 hrs
This course covers the properties and structure of materials: atomic bonding, molecular, crystalline, noncrystalline structures and crystalline imperfections. It also covers metallic phases, equilibrium and nonequilibrium reactions, processing and properties of ferrous and non-ferrous metals, polymers, ceramics and composites. In addition, corrosion phenomenon is discussed.
Prerequisites: CHM-125 and CHM-126 and PHY-130.

Course usage information

ENR-234. Independent Study in Technology. 3 Credits.

LECT 3 hrs
This course is for students in Engineering Technologies. The student selects an area of interest and proposes a plan of study to a sponsoring faculty member who supervises and evaluates the student's progress.
Prerequisites: Permission of department chair.

Course usage information

ENR-235. Engineering Circuit Analysis I. 3 Credits.

LECT 3 hrs
This first course in engineering circuit analysis covers DC circuit analysis including source transformations, mesh, nodal, superposition, Thevenin and Norton theorems, and the maximum power transfer theorem. Dependent as well as independent sources are included. Transient response of RC, RL and RLC circuits is introduced. Steady-state analysis of single and three phase AC systems is studied using phasor diagrams and the network theorems mentioned above. Real, reactive, apparent power and power factors are included. Use of the computer as a problem-solving tool is included in the course.
Prerequisites: MAT-132.

Course usage information

ENR-236. Engineering Circuit Analysis Laboratory I. 1 Credit.

LAB 3 hrs
This laboratory course includes experiments in DC, AC and transients to accompany the course work in Engineering Circuit Analysis I.
Corequisites: ENR-235
Additional Fees: Course fee applies.

Course usage information

ENR-237. Engineering Circuit Analysis II. 3 Credits.

LECT 3 hrs
This is a second course in engineering circuit analysis. Natural and step response of RL, RC and RLC circuits, mutual inductance, ideal transformers, series and parallel resonance are studied. Laplace transform theory is covered and includes step and impulse response in the S-domain. Bode diagrams of simple and quadratic factors are plotted and the computer is used for actual frequency and phase plots. Fourier Series are studied using both trigonometric and exponential forms.
Prerequisites: ENR-235
Corequisites: MAT-232.

Course usage information

ENR-238. Engineering Circuit Analysis Laboratory II. 1 Credit.

LAB 3 hrs
This laboratory course includes experiments on transformers, series and parallel resonance, filters and frequency/phase response plots, and two-port hybrid models to accompany the course work in Engineering Circuit Analysis II.
Prerequisites: ENR-236
Corequisites: ENR-237
Additional Fees: Course fee applies.

Course usage information

ENR-240. Engineering Technology Project. 3 Credits.

LECT 2 hrs, LAB 3 hrs
This course covers the design of products and processes considering functional requirements, manufacturing feasibility and economy, and the use of technical literature and catalogs. Includes design layout and working drawings and group and individual projects.
Prerequisites: ENR-117 and MEC-110 and MEC-141
Additional Fees: Course fee applies.

Course usage information

ENR-241. Instrumentation and Control. 3 Credits.

LECT 2 hrs, LAB 3 hrs
This course is an introduction to the study of measuring systems and components, digital and analog signals and their characteristics. Mechanical and electromechanical transducer elements are used to measure pressure, temperature, displacement, velocity and acceleration. Static and dynamic performance of instruments, statistical analysis of experimental data are explored. A brief study of process controllers, programmable logic controllers and final control elements are also explored.
Prerequisites: ELT-201
Additional Fees: Course fee applies.

Course usage information

ENR-290. Special Topics in Technology. 1 Credit.

LECT 1 hr
This course is for students in Engineering Technologies. The student selects an area of interest and proposes a plan of study to a sponsoring faculty member who supervises and evaluates the student's progress when used for independent study. The course is also used to cover either current or future topics of interest in technology. Topics discussed will have relevance to either electronics technology, mechanical technology or both, and may vary each semester.
Prerequisites: Permission of department chair.

Course usage information

ENR-291. Special Topics in Engineering. 3 Credits.

LECT 3 hrs
This course is an examination of selected topics or issues in engineering. Topics may differ each time the course is offered. Students should consult the department chair for further information.
Prerequisites: Permission of department chair.

Course usage information

ENR-292. Special Topics in Engineering. 3 Credits.

LECT 3 hrs
This course is an examination of selected topics or issues in engineering. Topics may differ each time the course is offered. Students should consult the department chair for further information.
Prerequisites: Permission of department chair.